
Computer Aided Content Generation – A Gloomhaven Case Study
Kristian Tijben

kristianwillem@gmail.com
University of Twente, Creative Technology

Enschede, The Netherlands

Marcus Gerhold
m.gerhold@utwente.nl

University of Twente, Formal Methods and Tools
Enschede, The Netherlands

ABSTRACT
We present how an evolutionary algorithm can be used to generate
scenarios for the board game Gloomhaven. The scenarios are eval-
uated according to size, difficulty, thematic coherence, complexity
and layout. We encode the game’s default scenarios into textual
descriptions and use them as initial population for the algorithm.
Our dungeon generation works within the confines given by the
physical board game, i.e., special attention is given to availabil-
ity of game pieces and map tiles. The generated dungeons can be
constructed without overlapping tiles.

CCS CONCEPTS
• Human-centered computing; • Computing methodologies
→ Search methodologies;

KEYWORDS
Evolutionary algorithm, dungeon generation, board game, Gloomhaven
ACM Reference Format:
Kristian Tijben and Marcus Gerhold. 2023. Computer Aided Content Gener-
ation – A Gloomhaven Case Study. In Foundations of Digital Games 2023
(FDG 2023), April 12–14, 2023, Lisbon, Portugal. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3582437.3587196

1 INTRODUCTION
“We are in the golden age of board games. It might be here to stay."
writes Washington Post’s author Jaclyn Preiser [34]. The COVID-
19 pandemic was only a catalyst for the surge in popularity of
board games. With more and more of our time being reliant on
computer screens, many people flock to analogue board games as
their preferred pastime [6]. It brings a welcome alternative to digital
content, offers satisfying haptics of interacting with physical game
pieces, and perhaps most importantly: it brings together people.

Nowhere can this better be seen than in table-top role playing
games (TTRPGs) like Dungeons & Dragons [31], Pathfinder [25], or
Starfinder [24]. Next to being tactical, turn-based role playing games
in their own right, these games excel in collaborative story-telling.
Certainly, big television series productions like Netflix’s Stranger
Things [20], or weekly shows on Twitch like Critical Role [38] have
brought these games to the consciousness ofmainstream consumers.
Many such games require a game master (GM) to function. While
players engage with their surroundings, the GM creates, steers and

This work is licensed under a Creative Commons Attribution International
4.0 License.

FDG 2023, April 12–14, 2023, Lisbon, Portugal
© 2023 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9855-8/23/04.
https://doi.org/10.1145/3582437.3587196

voices the surroundings. Preparing games as a GM can be fun, but
also a daunting task [26], and many people start out being a player
first. Because of that, some role playing games incorporate the
functionality of a GM to the game itself. By providing story booklets
and scenario guides players can branch the narratives whichever
way they choose without a GM having to prepare outcomes.

A prime example among those role playing games is the award
winning Gloomhaven [14]. The self-contained board game weighs
roughly 10kg and comes with a plethora of game pieces: detailed
miniatures, monster cards and standees, dungeon map tiles that can
be combined in a jigsaw-puzzle fashion, a well-defined rule book
and 95 hand-crafted scenarios by the games creator Isaac Childres
and other various guest-creators.

At the time of writing, the game enjoys a 8.4 out of 10 star rank-
ing on the internet forum BoardGameGeek [22] making it one of
the highest ranking board games there. Due to its popularity it
is decorated with numerous prizes, and spawned related games:
(1) Gloomhaven – Jaws of the Lion [15] offers a light-weight intro-
duction to the rules and acts as an entry-point to the full game,
(2) Gloomhaven – Forgotten Circles [16] is an add-on that brings
more official content to players, and (3) Gloomhaven – the video
game adaptation [41] brings the AI-like behaviour of enemies in the
board game to screens. Gloomhaven launched on Kickstarter. Its
campaign finished in March 2017 with 4,904 backers who pledged
roughly 386, 000 USD [28]. The success of the game cannot better
be described than by the follow-up Kickstarter campaign for the
second printing which had roughly 40,000 backers pledging roughly
4, 000, 000 USD [29]. The game’s success continues in Frosthaven,
Gloomhaven’s continuation, which increased the numbers yet again
to 83,193 backers pledging a total of 13, 969, 608 USD [27].

Gloomhaven’s scenarios are carefully handcrafted in terms of
difficulty, layout and thematic coherence. There is a vibrant online
community that takes Gloomhaven creator Isaac Childres’ offer
[13] and extends the game with their own scenarios and settings [5].
With the plethora of work on procedural content generation for
digital games [40], this then raises the question whether existing
methods can be leveraged to generate content for the physical
board game: Can scenarios and combat encounters be automatically
generated? Are they as balanced and immersive as handcrafted
ones? Gloomhaven has finitely many game pieces, and yet they can
combine to countlessly many different scenarios.

In this paper we present computer aided scenario generation
of Gloomhaven dungeons by means of an evolutionary algorithm.
Evolutionary algorithms rely on the idea of survival of the fittest that
produces an elite into a population over many evolutionary cycles.
The 95 default scenarios form the ground population from which
an evolutionary cycle begins to cross-breed dungeons and mutate
their properties. We pay particular attention to the constraints of
Gloomhaven’s physical game pieces: There is a limitation on the

https://orcid.org/0009-0003-5774-5230
https://orcid.org/0000-0002-2655-9617
https://doi.org/10.1145/3582437.3587196
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3582437.3587196

FDG 2023, April 12–14, 2023, Lisbon, Portugal Kristian Tijben and Marcus Gerhold

maximum number of enemies per dungeon and map tiles cannot
be generated, adjusted and combined at will.

Paper overview. In Section 2 we present closely related work.
Section 3 briefly introduces the game Gloomhaven and the concept
of evolutionary algorithms. In Section 4 we present in detail the
design choices of our evolutionary algorithm and its fitness function.
We showcase two generated dungeons in Section 5. Lastly, Section 6
concludes the paper with a short discussion and future work.

2 RELATEDWORK
Procedural content generation is a modern and popular research
field [40, 43] focusing on the algorithmic generation of media con-
tent. In particular, a plethora of work exists in procedural map
generation [35]. While the main focus often lies with digital con-
tent, computer aided support for physical board game generation
is not unheard of [1, 8]. For instance, the authors of [39] use an ant
colony optimisation algorithm to generate maps and game balance
in Terra Mystica [33] and Settlers of Catan [42].

The work by [45] discusses the fitness function for map gen-
eration in dungeon crawler games. The discussion of mutation
operator weights directly translates to our setting. However, un-
like our presented work, their approach is not limited by physical
game pieces. A taxonomy of analog procedural content generation
methods is presented in [7] with a focus on war games such as
Warhammer 40k [47] or Axis and Allies [23].

A taxonomy of search-based PCG is provided in [44], classifying
the content of generation and its evaluation. Our focus of generating
physical dungeon layouts clearly falls into the category of offline
generation. The author of [10] shows how floor maps consisting
of rectangles can be generated given certain constraints. Another
example of offline generation can be found in the seminal work of
Browne & Maire [8]. The authors apply the evolutionary cycle to
develop board game rule systems offline that are to be automatically
evaluated. While we focus on content for board game whose rule
set is known, the evolutionary approach remains similar.

The authors of [3] present an interactive evolutionary dungeon
designer and follow-up their initial study with a focus on dungeon
aesthetics [2]. This closely reflects our focus on dungeon thematic
coherence: We believe that Gloomhaven dungeons should not in-
troduce too many different thematic components such as enemy
types or terrain. Notably this is something that the game’s inherent
random dungeon generator does not always provide, cf. Figure 1.

A taxonomy of data structures in games is provided in [19]. This
perfectly includes the translation of hexgrids to graphs we apply
to Gloomhaven dungeons to guarantee solvability of the generated
scenarios. We employ similar graph-based techniques like [30] to
ensure that dungeons are solvable by base game actions and do not
require specific classes or items.

3 BACKGROUND
We briefly introduce the game Gloomhaven, the concept of evolu-
tionary algorithms, and we show how we apply it to Gloomhaven
scenarios. We believe that the detailed rules of Gloomhaven are not
crucial to the understanding of our work. Thus, we declare them
beyond the intended scope of this paper and refer the interested
reader the official rules book [14] or the brief introduction video [9].

Instead, we give a high-level overview of Gloomhaven’s game-loop,
and which part thereof we focus on in the presented work.

3.1 The Role-Playing Game Gloomhaven
Gloomhaven is a board game owned by Cephalofair which was
developed by Isaac Childres. At its core the game-loop is a com-
bination of turn-based tactical scenarios that are embedded in an
evolving campaign. Players take on the role of a band of mercenar-
ies that travels through the surroundings of the city Gloomhaven
to solve mysteries, fight monsters and collect treasure. The first
campaign scenario, for instance, tasks players to collaboratively
fight bandits and skeletons in the dungeon “Black Barrow” before
facing a boss type enemy in the follow-up scenario “Barrow Lair”.
From here, the story forks off into many possible paths which fur-
ther diverge based on player characters and their personal quests.
After each dungeon players progress their characters by acquiring
stronger skills or buying new equipment with money that was col-
lected or rewarded, and they progress the story by engaging with
events in and around the city of Gloomhaven.

The game is played cooperatively by two to four players, and
each scenario approximately takes 30 minutes per player. The
game’s difficulty is adjustable to the players’ liking ranging from
zero to seven. The properties of enemies on difficulty setting seven
are vastly superior to that of setting zero. Players can choose which
setting they would like to engage with to tailor their experience,
but the game provides a recommendation based on the player char-
acters’ own level. The game includes a scenario booklet that nar-
ratively introduces the dungeons and defines rules and objectives
without the need of a game master (GM). There are a total of 95
scenarios differing in difficulty and settings. In the game, players
explore dungeons infested by skeletons and the cultists who sum-
moned them, travel to distant planes of existence to fight elemental
spirits and demons, defy the harsh surroundings of Gloomhaven’s
outdoors or battle the very city guard that is protecting the city’s
walls.

The game offers high replayability due to its character progres-
sion and customization options. In addition, Gloomhaven contains
a random dungeon deck, i.e., a method to generate random dun-
geons on-the-fly via a system of random dungeon and monster
cards, cf. Figure 1. While the 95 scenarios offer high thematic co-
herence in narrative, terrain and enemy types, a random scenario
is literally that: random. To illustrate, a random scenario always
consists of three rooms with unique sets of enemies. Thus, one
room could contain cultists summoning living bones in a cavern,
the next could swarm with flying drakes on icy terrain, and the last
could contain city guards on a tile depicting wooden surroundings.
Isaac Childres encourages players to create new content for the
game [13] and the internet forum BoardGameGeek [22] has a large
collection of fan-made scenarios using the game’s game pieces and
rule system [5].

In this paper we present a new way to generate Gloomhaven
scenarios1 by means of an evolutionary algorithm. Our algorithm
addresses the lack of thematic coherence exhibited by the random

1We use the words “dungeon” and “scenario” interchangeably to refer to Gloomhaven
game scenarios that including physical map tiles, enemies, treasure, and scenario rules.

Computer Aided Content Generation – A Gloomhaven Case Study FDG 2023, April 12–14, 2023, Lisbon, Portugal

Figure 1: Cards of the random dungeon deck. The card on
the left specifies the room tile, while the card on the right
populates it with monsters, traps and treasures. The images
were taken from the Gloomhaven manual [14].

dungeon deck, cf. Figure 1. Special attention is paid to the limitations
posed by physical game pieces that are sold with a copy of the game.

3.2 Evolutionary Algorithms
Evolutionary algorithms [36] have a plethora of applications rang-
ing from engineering [18] over management [4] to game rules [8].
While the applications vary, the crucial components remain similar:

Population. An initial set of individuals comprising a pop-
ulation. Each member possesses unique properties called
the genotypes specific to this individual. The fitness of this
population is measured according to some fitness function.

Crossover. An evolutionary algorithm chooses two distinct
parent individuals, takes into account their fitness, and pro-
duces a new member based on their crossed-over genotype.

Mutation. The offspring of two parents undergoes mutation of
its genotype to avoid inbreeding and to allow for evolution.

Fitness. The newly crossed-over and mutated individual gets
measured according to a fitness function. This fitness func-
tion is at the core of an evolutionary algorithm. It describes
what constitutes a good individual. After the evaluation the
newly generated individual gets added to the population and
the cycle begins anew.

The core concept of an evolutionary algorithm is that many cycles of
reproduction eventually lead to an elite surfacing in the population
that is highly optimised with respect to the fitness function. Thus,
changing the fitness function steers the optimisation by giving
concrete numeric incentives.

We apply the cyclic algorithm to Gloomhaven dungeons. The
initial population is a subset of Isaac Childres carefully crafted 95
scenarios. Some scenarios, such as boss scenarios, were left out of
the ground population for the sake of simplicity. Those scenarios
use mechanics that are unique to the boss levels e.g., the “Bandit
Commander” opens doors, or the “Dark Rider” appears on marked
placement tokens on the map. During the crossover phase, two
scenarios are chosen. The algorithm then randomly selects the
genotype of either parent for (1) rules, (2) map tiles, (3) monsters, (4)
environment, and (5) treasures. For instance, given scenarios A and

B, the rules and map tiles of A may host the monsters, environment
and treasures of scenario B in the offspring.

During the mutation phase each single element of a genotype
can be mutated with a chance 𝑝 . Therefore, mutation of multiple
features at once is possible, albeit with lower probability. For in-
stance, it is possible that both the monsters and the rules mutate
during one cycle. Lastly, the fitness function is applied to the newly
generated dungeon, and it is added to the population.

4 IMPLEMENTATION
We explain our algorithm2 and design choices alongside Figure 2.
The algorithm is written in Python [46]. A starting population is
the prerequisite for the evolutionary algorithm. We chose to encode
a subset of the default scenarios designed by the game’s creator
Isaac Childres. Special scenarios like boss scenarios were excluded
due to their reliance on special rules. They can be added later.

Gloomhaven’s first introduction scenario is called #1 Black Bar-
row, cf. Figure 3. It contains the three enemy types “Bandit Guard”,
“Bandit Archer” and “Living Bones” spread out on three different
room tiles “L1a”, “G1b” and “I1b”. The goal of the scenario is to “kill
all enemies”. We encoded this information in a Python dictionary,
cf. Figure 4.

Example 4.1. The encoding of room tiles in Line 5 includes the
physical tile, its side (either “a” or “b”) and its orientation in multi-
ples of 60 degrees. This ensures that the mutation algorithm will
not use sides “a” and “b” for one map. The connections of the phys-
ical map pieces are defined in Line 6. The first three numbers are
cubic hex-coordinates that give the unique location in the hexgrid,
cf. Figure 5. The last number indicates its rotation angle: Physical
tiles are connected like jigsaw-pieces with an entry and an exit.
Naturally, both only fit together if they are aligned correctly, e.g.,
if an exit is positioned with 0 degree with respect to the hexgrid,
then its connecting piece must be aligned with 180 degree, lest the
jigsaw connectors will not fit. The last number represents this in in-
crements of 30 degrees, e.g., the exit of map tile “L1a” is positioned
in a 90 degree angle that connects to the entry of “G1b” at a 270
degree angle.

Line 7 defines the enemy types and the number of normal and
elite monsters. The latter are typically stronger and thus increase
the dungeon’s overall difficulty. The number of both varies depend-
ing on the number of player characters. I.e., a dungeon contains
more enemies for four players than for two to scale the difficulty.

Lines 8 to 16 define the number and location of coin and trea-
sure tiles, and additional overlay tiles such as traps and obstacles.
We define a nested dictionary of placement locations with hex-
coordinates of all these items. For the sake of readability it is not
included here, since it only consists of lists containing cubic hex-
grid coordinates. For instance, the unique treasure chest has the
coordinates [7,−10, 3] and both of the dungeon’s damage traps are
located at [6,−4,−2], [7,−4,−3]. Lastly, Line 16 defines the main
theme of the map “Dungeon”, comprising all brown/orange map
tiles with stone floor tiles.

2The implementation can be found in the GitHub repository: https://github.com/
kristianwillem/GloomDungeons.

https://github.com/kristianwillem/GloomDungeons
https://github.com/kristianwillem/GloomDungeons

FDG 2023, April 12–14, 2023, Lisbon, Portugal Kristian Tijben and Marcus Gerhold

Population Select parents Crossover

MutationValidity checkValid?Evaluation

Initial
evaluation

Yes

No
Add

Figure 2: The evolutionary cycle applied to Gloomhaven dungeons. In an initial evaluation a subset of the game’s default 95
scenarios is rated according to a fitness function. Two parents are chosen according to a uniform distribution over their rating,
which makes it more likely to choose fit parents. The genotypes of parents are crossed-over and properties of either are chosen
with a ratio of 50:50. The mutation step changes random elements of the genotype before a validity check happens. If the check
is passed, the newly created dungeon enters the population and the cycle begins anew.

Figure 3: Gloomhaven Scenario #1 - Black Barrow [14].

4.1 Select Parents
Every dungeon in the population is initially evaluated according to
the fitness function, cf. Section 4.5. To ensure a general tendency
towards elitism in the population, we give a preference to those
dungeons with a high fitness value. This is done by a uniform
distribution over a dungeon’s own contribution to the sum of all
fitness values. E.g. if dungeons A, B and C have fitness values of 1,
2 and 3 respectively, then the chance to select A is 1/6, the chance
to select B is 1/3 and the chance to select C is 1/2.

4.2 Crossover
We define the genotype of a dungeon to consist of (1) rules, (2) map,
(3) monsters, (4) overlay tiles, and (5) treasure. We showcase their
encoding in Example 4.1 and Figure 4, respectively. A new offspring
dungeon is created by randomly choosing each property of parent
dungeon A or parent dungeon B with equal probability.

1 b l a c k burrow = {
2 " name " : " B l ack Barrow " ,
3 " goa l " : " k i l l a l l enemies " ,
4 " r u l e s " : [] ,
5 " rooms " : [[" L1 " , " a " , 3] , ["G1 " , " b " , 0] , [" I 1 " , " a " , 3]] ,
6 " c onne c t i on s " : [[" L1 " , [2 , −3 , 1 , 3 , " e x i t "] ,

"G1 " , [−1 , 1 , 0 , 9 , " en t ry "]] ,
["G1 " , [4 , −1 , −3 , 0 , " e x i t "] ,
" I 1 " , [−3 , 1 , 2 , 6 , " en t ry "]]] ,

7 " dungeon_monsters " : [[" Band i t Guard " , 4 , 1] ,
[" Band i t Archer " , 2 , 1] ,
[" L i v i ng Bones " , 2 , 0]] ,

8 " o b s t a c l e s " : 4 ,
9 " t r a p s " : 2 ,
10 " h a z a r d o u s _ t e r r a i n " : 0 ,
11 " d i f f i c u l t _ t e r r a i n " : 0 ,
12 " c h e s t s " : [" i t em "] ,
13 " c o i n s " : 5 ,
14 " p l a cemen t s " : b l ack_bar row_p lacement ,
15 " s t a r t " : 7
16 " main_theme " : " Dungeon " ,
17 }

Figure 4: Encoding of the default Gloomhaven scenario #1 –
Black Burrow [14].

4.3 Mutation
Where the crossover was a simple selection between properties of
A or B, the mutation step of each gene differs. Each gene in the
genotype of the offspring has probability 𝑝 to mutate. E.g., the prob-
ability that all genes mutate in one step is 𝑝5, and the probability
that exactly two genes mutate is 𝑝2 · (1 − 𝑝)3. An easy extension is
to give each genotype its own mutation probability 𝑝1, . . . , 𝑝5. For
simplicity we did not include it yet in our evolutionary algorithm.

Rule mutation. The pool of possible scenario rules is predefined
by the scenario book. For the sake of simplicity, our implemen-
tation contains the rules “All characters start the scenario with
the poison/disarm/wound/immobilize effect” and “Add three curse
cards/-1 attack modifier cards to each character’s attack modified
deck”. If the rule mutation triggers then one of the predefined rules

Computer Aided Content Generation – A Gloomhaven Case Study FDG 2023, April 12–14, 2023, Lisbon, Portugal

is chosen with some probability. The probability to choose another
rule decreases by half with every new addition. Thus, it might also
be possible that no rule is chosen at all, cf. Figure 4.

Monster mutation. Each monster is assigned a theme. The bandit
guards and archers of Example 4.1 are of theme “Outlaw”, whereas
the living bones are of theme “Undead”. This is done to maintain
thematic coherence during the dungeon evolution. To do so, we
introduce a bias towards a theme. Hence, it is possible to introduce
new monster themes, e.g., “Elementals” and “Undead”, but the prob-
ability of doing so is set. We point out that the initial definition of
each theme was done by us and can be changed on demand. As
an extension, it would be interesting to infer the different themes
from the original 95 scenarios. For now we declare this beyond the
scope of our work and focus on the usage of the theme instead.

If the monster mutation triggers, new monster are chosen de-
pending on theme, difficulty and maximal game piece availability.
To help creators balance combat encounters Isaac Childres has
given each monster an inherent difficulty rating ranging from 0.5
for easy to 2.0 for difficult [11]. Additionally, Isaac Childres intro-
duces a factor of ×2 for elite monsters [12] in his difficulty rating.
We emphasize that this difficulty rating is not the one chosen by
the players ranging from zero to seven, but scenario inherent, cf.
Section 3.1.

Our algorithm calculates the total difficulty and the number of
monster types of the original offspring. It then chooses new values
for both of them with a normal distribution, i.e. the number of
different monster types and absolute number of monsters of this
type may change. It then populates the dungeon until the initial
difficulty rating threshold is reached by either adding newmonsters
or promoting them to elite status.

Example 4.2. The total enemy difficulty rating of Example 4.1
is twelve. It comprises: four regular “Bandit Guards” (1), one elite
“Bandit Guards” (2), two regular “Bandit Archers” (1), one elite
“Bandit Archer” (2), and two regular “Living Bones” (1). Since all
enemies have inherent difficulty rating one, the total difficulty of
the dungeon yields twelve. During the mutation step, all of these
enemies could, for instance, be replaced by three regular “Stone
Golems” (2), one elite “Stone Golem” (4), and lastly four “Ancient
Artillery” (1). All newly chosen enemies are of type “machine” such
that the thematic consistency persists. Lastly, the chosen enemies
physically occur six times in the base game, thus making this setting
possible.

Overlay tile mutation. If the overlay tile mutation is triggered,
all overlay tiles of the offspring dungeon are counted. This includes
obstacles, difficult terrain, hazardous terrain and traps. The actual
mutation uses a Gaussian distribution to ensure that the new num-
ber of overlay tiles will be between 0.5 to 1.5 times that of the
original with a probability of 95%. Hence, the number of overlay
tiles may increase or decrease in every evolution cycle.

Treasure mutation. Coin tokens mutate by using the same me-
chanic as overlay tiles, i.e. there is a 95% change that the new
number is 0.5 to 1.5 times the original. Treasure tiles use the same
mutation mechanic like rules, i.e., the chance that new treasure is
added decreases. The first one has a probability 𝑝 , the second has

𝑝/2 etc. The treasure chest content is randomized uniformly over a
handpicked selection of possible treasures.

Map mutation. The physical board tiles and puzzle connector
pieces prevent the map mutation step from being straightforward.
Intuitively, one would want to swap one map tile for a random other
one. However, the connecting pieces must fit while simultaneously
not causing an overlap of the physical game tiles, cf. Example 4.1.

Instead, we chose the following method to generate a map from
ground up: First the algorithm takes the minimum and maximum
total hexes of dungeons in the population to establish a distribution
over desirable numbers. E.g., if the smallest dungeon had two hexes,
and the largest one 100, the map mutation creates a map that has a
normally distributed number of hexes around the mean of 51 hexes.

To adhere to the restrictions of the physical game pieces the
new map is constructed step-by-step. First, a map tile is chosen
at random. Then a random connecting piece is chosen. This new
piece has to adhere to two conditions: (1) it cannot be a tile that
was already added to the map, neither the “a” nor the “b” side, and
(2) the rotation of the piece must be chosen, such that it aligns the
jigsaw-puzzle connectors. The latter also involves overlapping of
the card-board pieces beyond just the connecting hex. To guarantee
no overlapping, we run a validity check that is further explained
in Section 4.4. It is based on the underlying graph structure of the
hexes, cf. Figure 5.

Map tiles are added with some probability until the number of
hexes lies between the predefinedminimum andmaximum tiles. For
simplicity, our implementation always places an unopened door
between two map tiles. There are scenarios in the Gloomhaven
booklet that connect two map tiles by covering the wall with empty
floor tiles. This creates one big room instead of two smaller ones.

The last step of the map mutation mutates the placements of tiles
such as overlay tiles, treasures or monsters. Since the map is known,
this phase of the algorithm distributes each piece over unoccupied
hexes of the map in a uniform distribution. For the sake of read-
ability we grouped these hex-coordinates together in a separate
dictionary, cf. Line 14 in Figure 4. One exception is the placement
of the starting locations; they are clustered together in almost all
default scenarios, cf. Example 4.1. Hence, our implementation does
the same.

4.4 Validity Check
Gloomhaven offers the players a variety of classes to play as, e.g., the
melee class “Brute” or the ranged class of “Doomstalker”. To guar-
antee solvability of the generated scenarios no matter the choice of
classes, we apply a validation step at the end of the cycle. This pre-
vents the generation of unsolvable deadlock scenarios. This could
be a dungeon that has the completion rule “kill all enemies”, and an
enemy that is locked behind a wall of obstacles – an impossible ask
for a melee-only player. Next to guaranteeing the ability to solve
the game with just base walk and base attack actions, this checks
the limitations of the physical game pieces, i.e. overlapping map
pieces. Deadlock scenarios and physical limitations are checked
with a graph transformation of the hexgrid and resulting graph
search algorithms, cf. Figure 5.

FDG 2023, April 12–14, 2023, Lisbon, Portugal Kristian Tijben and Marcus Gerhold

(0,0,0)

(0,1,-1)

(0,-1,1)

(0,-2,2)

(-1,1,0)

(-1,0,1)

(-1,-1,2)

(1,0,-1)

(1,-1,0)

(1,-2,1)

(a) Hexgrid with cubic coordinates.

(0,0,0)

(-1,0,1)(0,-1,1) (-1,1,0) (0,1,-1) (1,0,-1) (1,-1,0)

(-1,-1,2) (0,-2,2) (1,-2,1)

(b) Graph structure of hexgrid. Many states and edges are omitted for readabil-
ity.

Figure 5: Converstion from a hexgrid (left) to a graph (right). The hexgrid origin is labeled (0, 0, 0). The red line indicates a
path through the grid and graph, respectively. Notably, the node (1,−1, 0) is an obstacle. Thus, it can neither be reached nor
traversed. To ensure solvability of a Gloomhaven dungeon a depth-first search is performed from the starting location(s) to
each enemy coordinate. If there is an enemy that cannot be reached, the scenario cannot be solved with only the base attack
and base move action. Note that many coordinates, nodes and connecting edges were omitted for readability.

Graph construction. We construct a graph data structure from the
hexgrid of the dungeon map. This process can be seen in Figure 5.
One hex is selected as the origin of the coordinate system and
number triplets give each other hex a unique location with respect
to the origin. The graph on the right hand side in Figure 5 consists
of vertices and edges. Two connected vertices thus indicate that
movement from one hex to the other is possible. Searching a path
inside the hexgrid then turns into a standard search for paths on
mathematical graphs with algorithms such as depth-first search
(DFS) or breadth-first search (BFS) [17].

Reachability analysis. To facilitate that each scenario is solvable
irrespective of player class or equipment, we require that scenario
goals are achievable by only the base attack action and base move
action available to all classes. Our algorithm checks via graph search
algorithms such as DFS whether there exists a path on the graph
from the players to each enemy. Should there be an enemy that is
not reachable via DFS, then the player character cannot eliminate it
with the standard melee attack. As a result, the generated scenario
is discarded and the mutation step is repeated, cf. Figure 2. This
state reachability is a well-established procedure and has been done
for other games like Sokoban [30]. Currently our implementation
only supports the scenario goal “kill all enemies”. However, the
same validity check could be done for goals like “loot all treasure
tiles” and the basic loot action, or reaching specific hex coordinates
on a map and the basic move action.

Physical restrictions. The dungeon layouts are limited by phys-
ically existing game pieces. Our algorithm ensures that the total
number of available game pieces is not exceeded, no single map
tile is used twice via its “a” or “b” side, and that the created dun-
geon causes no overlap of physical map pieces. This highlights
the key difference between working within the constraints of a
physical board game versus a purely digital one. In a digital version

of Gloomhaven, an overlap could be avoided by, e.g., stretching a
single hexagon, or introducing elevation levels.

The map is either directly given from the crossed-over parents
and correct by transitivity, or newly created in the mutation phase,
cf. Section 4.3. In the latter, we can use the hexgrid to determine its
validity. Should overlapping game pieces exist, then two nodes in
the hexgrid will have the same coordinates. Due to the uniqueness
of coordinates with respect to the origin (0, 0, 0), this is not allowed.
Consequently, the map is discarded and the mutation begins anew,
cf. Figure 2. Since amutation is triggeredwith a non-zero probability
𝑝 , there is a non-zero chance that no mutation will happen which is
(1 − 𝑝)5. This ensures that the algorithm terminates almost surely.

4.5 Evaluation
After a dungeon was crossed-over, mutated and validated it will be
added to the population. For that, its fitness needs to be determined.
The fitness function is the core of every evolutionary algorithm.
Our approach includes the following components: (1) difficulty, (2)
size, (3) complexity, (4) theme, and (5) layout. This results in our
proposed fitness function which we briefly explain below:

fitness = 𝑤1 · difficulty +𝑤2 · size +𝑤3 · complexity + (1)
𝑤4 · theme +𝑤5 · layout .

Difficulty is the sum of difficulty ratings of all monsters in a
dungeon. The rating was introduced by the game’s creator
Isaac Childres to help players create dungeons. Note that this
does not refer to the difficulty levels zero to seven that can
be chosen by players at the start of a scenario, cf. Section 3.1.

Size is the absolute number of all hexes on the map, including
connection tiles on jigsaw-pieces.

Complexity is the number of rules in a scenario, e.g., “all
characters start poisoned”.

Computer Aided Content Generation – A Gloomhaven Case Study FDG 2023, April 12–14, 2023, Lisbon, Portugal

(a) Generated dungeon “Overgrown Ruin”. (b) Generated dungeon “Drake Kennels”.

Figure 6: Two dungeons that were generated using the evolutionary algorithm described in Section 4. Both dungeons are the
top ranked individuals in their batch with respect to their fitness value after 100 cycle iterations. “Overgrown Ruin” had a total
score of 4.83 out of a possible 5, and “Drake Kennel” had 4.85.

Layout is the ratio of all occupied versus empty hexes. A hex
can be occupied by at most one of monsters, obstacles, over-
lay tiles, treasures, coins or starting locations.

Theme consists of the number of used monster themes, e.g.,
“Undead” or “Machine”, and the used dungeon theme, e.g.,
“Cave” or “Building”.

Defining a fitness function steers the evolutionary cycle and defines
what is considered a good individual. For the properties difficulty,
size, complexity and layout that fitness function is defined by the
default scenario book’s average, i.e., for each property 𝑝:

𝑝 = 1 −
|fitnessideal (𝑝) − fitnessnew_dungeon (𝑝) |

fitnessideal (𝑝)
(2)

For instance, according to Isaac Childres the ideal dungeon dif-
ficulty lies between 30 and 36 for four players. Thus, choosing
the average in fitnessideal (difficulty) = 33 is a reasonable choice3.
Moreover, the average number of hexes of all scenarios we used in
our prototype was 90. Hence, we initially set fitnessideal (size) = 90.

Only the fitness of theme is calculated differently. Under the as-
sumption that a highly thematically coherent dungeon is desirable,
each additionally used theme is penalized. Thus,

theme = 1 − thematic_difference (3)

where thematic_difference ∈ [0, 1].

3Creating scenarios for two players requires us to halve this number to a range of 15
to 18 with an average of 16.5. For numerical reasons we doubled this number again
and adjusted all other difficulty weights accordingly.

Combining all in the fitness equation (1) means that an “ideal”
dungeon has the overall fitness of sum of all its weights. While it
is possible to construct such a dungeon manually, our approach
repeatedly creates new ones whose score will be close to ideal.

5 EXPERIMENTS
We present two scenarios that were generated with the evolutionary
algorithm described in Section 4. Both dungeons are the best-rated
dungeon according to the fitness function (1) in their respective
batches after 200 iterations of the evolutionary cycle. The execution
time for 200 iterations of the cycle is close to instantaneous (ap-
proximately one second) on a Lenovo Carbon X1 10th generation
with Intel® Core™ i7-1260P processor and 32GB RAM.

To test the feasibility of the generation we set 𝑤𝑖 = 1 for all
𝑖 = 1, . . . , 5, i.e., all components of a dungeon’s genotype were
ranked as equally important. Given the allocation of the weights
the highest score possible is 5.

5.1 Generated Dungeon 1 – “Overgrown Ruin”
The generated dungeon can be seen in Figure 6a. It was the best
dungeon of its population after 200 cycles with the scores:

Total Difficulty Size Complexity Layout Theme
4.83 0.92 0.96 1.0 0.95 1.0

Evidently, the fitness of all sub-components came close to the
ideal value specified in (2) and (3), respectively. The generated dun-
geon has the two enemy types “Ooze” and “Giant Viper”. Under

FDG 2023, April 12–14, 2023, Lisbon, Portugal Kristian Tijben and Marcus Gerhold

our enemy type categorization both fall under “Poison”. The used
dungeon tiles are of category “Dungeon”. Given this thematic com-
posure we baptised it “Overgrown Ruins”.

We would like to highlight two things: (1) The selection and
layout of the map clearly shows that tiles do not overlap, even
though the space is rather tight. This is based on the underlying
graph transformation, checking whether every cubic hexcoordinate
in the graph is unique, cf. Figure 5. (2) The “layout” value, i.e., the
value accounting for hexes occupied with treasure chests, coins,
traps and obstacles is 0.95. According to our specification, this
is close to the ideal value. Notably, the generation produced an
obstacle closely edged into the corner of a room, making the hex
behind it entirely inaccessible. This hex, however, does not contain
an enemy. As such, the algorithm deems the dungeon solvable by
basic move and basic attack options, and it is not discarded.

5.2 Generated Dungeon 2 – “Drake Kennels”
The generated dungeon can be seen in Figure 6b. It was the best
dungeon of its population after 200 cycles with the following scores

Total Difficulty Size Complexity Layout Theme
4.85 1.0 0.97 1.0 0.93 0.95

Again, the fitness of all sub-components came close to the opti-
mally specified values of (2) and (3). The dungeon contains “City
Guard” and “Rending Drake” enemies. The first belongs to “City”
type and the latter counted towards the “Drake” type according
to our classification. Given that all the map tiles belonged to the
“Dungeon” category we baptised the scenario “Drake Kennels”.

Compared to “Overgrown Ruin” the dungeon is rather compact.
Two interesting things stand out: (1) Many dungeons of the default
95 scenarios connect two map tiles of equal size to one big one by
covering the wall with floor tiles. “Drake Kennel” connects them
via one door, instead. Our algorithm currently only checks for
the connecting jigsaw-pieces and places door tiles on top of them.
Hence, covering a wall between two rooms entirely with floor tiles
is currently not possible. (2) The separate room containing four
coin tokens is rather unusual given the default scenarios, but all
within the boundaries of our algorithm. Adding some narrative to
the dungeon, this could be a treasury or treasure hoard.

6 CONCLUDING REMARKS
We presented how new Gloomhaven scenarios can be generated
with an evolutionary algorithm. A subset of the 95 existing default
scenarios is encoded in data structures that can be used for cross-
breeding and mutation. Due to a validity check we guarantee that
our generated scenarios can be build by using the game’s default
game pieces. In addition, they are solvable by all player classes, and
incentivised by our fitness function to be thematically coherent and
close to existing scenarios in terms of size and difficulty.

We conclude the paper with a short discussion of our work, and
indicate directions for future work and extensions to our algorithm.

6.1 Discussion
The application of computer aided game content design via an evo-
lutionary algorithm is not limited to Gloomhaven. Any game of

sufficient complexity could benefit from this approach. Addition-
ally, the same approach can be used on rule mechanics to create
entirely new games [8]. The linchpin in all applications of evolu-
tionary algorithms is the fitness function. We began this research
due to the perceived lack of thematic coherence in the game’s
own random dungeon generator and consequently made it a factor
in our fitness function. In addition to theme our fitness function
includes: difficulty, size, complexity and layout. However, a well-
designed Gloomhaven scenario is much more than the sum of its
parts; There is elegance in storytelling by strategic object place-
ment or enemy placement, symmetry, or special scenario rules and
game tiles. While these are currently not covered by our fitness
function, the modularity of our implementation makes it such that
adaptations can easily be done.

Ultimately, we are interested in creating scenarios that are to be
enjoyed by human players. Currently it is unclear to what extent
individual weights and the fitness value as a whole predicts en-
joyment. Our interest therefore is twofold: (1) On one hand future
research should focus on playtesting and measuring the contribu-
tion of individual weights in the fitness function. This can be done
either by humans, or automating this process by using AI-agents
to some extent [8, 21]. (2) On the other hand it is important to
find important metrics to include in the fitness function and to
strengthen the links between the currently existing ones. For in-
stance, hazardous terrain and rules that impose a disadvantage on
players should be intertwined with a scenario’s difficulty rating.

We also point out that the evolutionary algorithm creates stan-
dalone scenarios that are supposed to be thematically coherent.
To further automate the content generation and to easily create a
narrative surrounding a generated scenario we could utilize large
language models like ChatGPT [32]: Given the outlines of a sce-
nario like enemy types, map tiles, scenario goal and rules, ChatGPT
could craft a story that accompanies the scenario.

6.2 Future Work
There is some work to be done to refine our tool for Gloomhaven
to facilitate its usefulness in real life game sessions as an on-the-fly
way to generate dungeons. In its current state our tool outputs
a textual description of a Gloomhaven dungeon using cubic hex-
coordinates. This can be quite challenging for human players to
parse on the spot. Since all game pieces are known a priori, an easy
follow-up is the visualisation by means of images and map depic-
tions. This aligns our algorithmic output with the depiction of sce-
narios in the game manual. Integration into existing tools is rather
easy. For instance, [37] is a service that allows dungeon imports via
files in the JSON format. To ensure that generated dungeons fit on
a physical table, the validation step could include a check for maxi-
mal physical size: Each hex is roughly 32mm from side to side and
38mm from corner to corner. The cubic hex-coordinates can then
easily be utilized such that the maximal length/width threshold is
not exceeded.

Beyond that, the customization possibilities of the algorithm are
near endless: An obvious next step is to facilitate the generation of
scenarios for more than two players. With some effort we could also
generate new boss scenarios by further linking scenario goals to
the existence of certain game pieces, e.g., the “Bandit Commander”

Computer Aided Content Generation – A Gloomhaven Case Study FDG 2023, April 12–14, 2023, Lisbon, Portugal

requires the existence of more than one door in its room, such that it
can use its special ability to open them.We already outlined that the
existing validity check could be utilized for that and other scenario
goals: In addition to requiring reachability of all enemies by players
in the hexgrid, the same could be done for treasure chests, special
obstacles etc. We could incentivise the algorithm to cluster together
overlay tiles such as the water in “Drake Kennels”. We could also
use other distributions to calculate the contribution of individual
properties, i.e. formulas (2) and (3).

We could, however, also embrace some quirkiness of the gener-
ated dungeons, take on some agency as Game Masters and let them
inspire hand-crafted scenario descriptions.

REFERENCES
[1] Ingo Althöfer. 2003. Computer-aided game inventing. Friedrich Schiller Univer-

sität, Jena, Germany, Tech. Rep (2003).
[2] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, and Simon Johans-

son. 2018. Assessing Aesthetic Criteria in the Evolutionary Dungeon Designer.
In Proceedings of the 13th International Conference on the Foundations of Digital
Games (Malmö, Sweden) (FDG ’18). Association for Computing Machinery, New
York, NY, USA, Article 44, 4 pages. https://doi.org/10.1145/3235765.3235810

[3] Alberto Alvarez, Steve Dahlskog, Jose Font, Johan Holmberg, Chelsi Nolasco,
and Axel Österman. 2018. Fostering Creativity in the Mixed-Initiative Evo-
lutionary Dungeon Designer. In Proceedings of the 13th International Confer-
ence on the Foundations of Digital Games (Malmö, Sweden) (FDG ’18). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 50, 8 pages.
https://doi.org/10.1145/3235765.3235815

[4] Jörg Biethahn and Volker Nissen. 2012. Evolutionary algorithms in management
applications. Springer Science & Business Media.

[5] BoardGameGeek. 2000. BoardGameGeek: Gloomhaven: Scenarios. https:
//boardgamegeek.com/wiki/page/thing:174430:Scenarios. Accessed: 2023-01-27.

[6] Paul Booth. 2021. Board Games as Media. Bloomsbury Publishing USA.
[7] Joseph Alexander Brown and Marco Scirea. 2018. Procedural Generation for

Tabletop Games: User Driven Approaches with Restrictions on Computational
Resources. In Proceedings of 6th International Conference in Software Engineering
for Defence Applications, SEDA 2018, Rome, Italy, June 7-8, 2018 (Advances in
Intelligent Systems and Computing, Vol. 925), Paolo Ciancarini, Manuel Mazzara,
Angelo Messina, Alberto Sillitti, and Giancarlo Succi (Eds.). Springer, 44–54.
https://doi.org/10.1007/978-3-030-14687-0_5

[8] Cameron Browne and Frédéric Maire. 2010. Evolutionary Game Design. IEEE
Trans. Comput. Intell. AI Games 2, 1 (2010), 1–16. https://doi.org/10.1109/TCIAIG.
2010.2041928

[9] Gaming Rules! YouTube Channel. 2016. How to Play Gloomhaven - Official
Tutorial. https://youtu.be/XUx7riwsrwY. Accessed: 2023-01-27.

[10] Philippe Charman. 1994. A Constraint-based Approach for the Generation of
Floor Plans. In Sixth International Conference on Tools with Artificial Intelligence,
ICTAI ’94, New Orleans, Louisiana, USA, November 6-9, 1994. IEEE Computer
Society, 555–561. https://doi.org/10.1109/TAI.1994.346443

[11] Isaac Childres. 2015. Gloomhaven Monster Spoilers. https://cephalofair.com/
pages/gloomhaven-monster-spoilers. Accessed: 2023-01-27.

[12] Isaac Childres. 2015. Isaac Childres Forum Post. https://boardgamegeek.com/
thread/1430857/submissions-fan-made-scenarios-are-open. Accessed: 2023-01-
27.

[13] Isaac Childres. 2016. The Endless Adventure. https://cephalofair.com/blogs/blog/
endless-adventure. Accessed: 2023-01-27.

[14] Isaac Childres. 2017. Gloomhaven. Board Game.
[15] Isaac Childres. 2020. Gloomhaven: Jaws of the Lion. Board Game.
[16] Isaac Childres and Marcel Cwertetschka-Mattasits. 2020. Gloomhaven: Forgotten

Circles. Board Game.
[17] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

2022. Introduction to algorithms. MIT press.
[18] Dipankar Dasgupta and Zbigniew Michalewicz. 2013. Evolutionary algorithms in

engineering applications. Springer Science & Business Media.
[19] Luiz Jonata Pires de Araujo, Mariia Charikova, Juliano Efson Sales, Vladislav

Smirnov, and Ananga Thapaliya. 2019. Towards a Game-Independent Model and
Data-Structures in Digital Board Games: An Overview of the State-of-the-Art.
In Proceedings of the 14th International Conference on the Foundations of Digital
Games (San Luis Obispo, California, USA) (FDG ’19). Association for Computing
Machinery, New York, NY, USA, Article 93, 8 pages. https://doi.org/10.1145/
3337722.3342238

[20] Matt Duffer and Ross Duffer. 2016. Stranger Things. TV series.

[21] Raluca D. Gaina, Martin Balla, Alexander Dockhorn, Raúl Montoliu, and
Diego Perez Liebana. 2020. TAG: A Tabletop Games Framework. In Joint Pro-
ceedings of the AIIDE 2020 Workshops co-located with 16th AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment (AIIDE 2020), Worcester,
MA, USA, October 19-23, 2020 (online) (CEUR Workshop Proceedings, Vol. 2862),
Joseph C. Osborn (Ed.). CEUR-WS.org. https://ceur-ws.org/Vol-2862/paper9.pdf

[22] Board Game Geek. 2000. Board Game Geek. https://boardgamegeek.com/. Ac-
cessed: 2023-01-27.

[23] Larry Harris. 1984. Axis & Allies: Classic. Board Game.
[24] Paizo Inc. 2017. Starfinder. Core Rulebook.
[25] Paizo Inc. 2019. Pathfinder. Core Rulebook Second Edition.
[26] Akrivi Katifori, Dimitra Petousi, Pantelis Sakellariadis, Maria Roussou, and

Yannis Ioannidis. 2022. Tabletop Role Playing Games and Creativity: The
Game Master Perspective. In Proceedings of the 17th International Conference
on the Foundations of Digital Games (Athens, Greece) (FDG ’22). Association
for Computing Machinery, New York, NY, USA, Article 62, 7 pages. https:
//doi.org/10.1145/3555858.3555918

[27] Kickstarter. 2015. Kickstarter Campaign Frosthaven. https://www.kickstarter.
com/projects/frosthaven/frosthaven. Accessed: 2023-01-27.

[28] Kickstarter. 2015. Kickstarter Campaign Gloomhaven. https://www.kickstarter.
com/projects/frosthaven/gloomhaven. Accessed: 2023-01-27.

[29] Kickstarter. 2017. Kickstarter Campaign Gloomhaven – 2nd printing. https:
//www.kickstarter.com/projects/frosthaven/gloomhaven-second-printing. Ac-
cessed: 2023-03-23.

[30] Yoshio Murase, Hitoshi Matsubara, and Yuzuru Hiraga. 1996. Automatic Making
of Sokoban Problems. In PRICAI’96: Topics in Artificial Intelligence, 4th Pacific
Rim International Conference on Artificial Intelligence, Cairns, Australia, August
26-30, 1996, Proceedings (Lecture Notes in Computer Science, Vol. 1114), Norman Y.
Foo and Randy Goebel (Eds.). Springer, 592–600. https://doi.org/10.1007/3-540-
61532-6_50

[31] Wizards of the Coast. 2014. Dungeons and Dragons fifth Edition. Player’s
Handbook.

[32] OpenAI. 2022. ChatGPT. https://openai.com. Accessed : 2023-01-27.
[33] Helge Ostertag and Jens Drögemüller. 2012. Terra Mystica. Board Game.
[34] Jaclyn Peiser. 2022. https://www.washingtonpost.com/business/2022/12/24/board-

game-popularity/. TheWashington Post (Dec 2022). https://www.washingtonpost.
com/business/2022/12/24/board-game-popularity/

[35] Leonardo Tortoro Pereira, Paulo Victor de Souza Prado, Rafael Miranda Lopes,
and Claudio Fabiano Motta Toledo. 2021. Procedural generation of dungeons’
maps and locked-door missions through an evolutionary algorithm validated
with players. Expert Systems with Applications 180 (2021), 115009. https://doi.
org/10.1016/j.eswa.2021.115009

[36] Alain Pétrowski and Sana Ben-Hamida. 2017. Evolutionary algorithms. John
Wiley & Sons.

[37] PurpleKingdomGames. 2020. Virtual Gloomhaven Board. https://vgb.
purplekingdomgames.com/Creator. Accessed: 2023-01-27.

[38] Critical Role. 2015. Critical Role. https://critrole.com/. Accessed: 2023-01-27.
[39] Rommel Dias Saraiva, Alexandr Grichshenko, Luiz Jonatã Pires de Araújo, Bon-

fim Amaro Junior, and Guilherme Nepomuceno de Carvalho. 2020. Using Ant
Colony Optimisation for Map Generation and Improving Game Balance in the
Terra Mystica and Settlers of Catan Board Games. In Proceedings of the 15th
International Conference on the Foundations of Digital Games (Bugibba, Malta)
(FDG ’20). Association for Computing Machinery, New York, NY, USA, Article
112, 7 pages. https://doi.org/10.1145/3402942.3409778

[40] Noor Shaker, Julian Togelius, and Mark J. Nelson. 2016. Procedural Content
Generation in Games. Springer. https://doi.org/10.1007/978-3-319-42716-4

[41] Flaming Fowl Studios. 2021. Gloomhaven: Forgotten Circles. Video Game.
[42] Klaus Teuber. 1995. Settlers of Catan. Board Game.
[43] Julian Togelius, Alex J. Champandard, Pier Luca Lanzi, Michael Mateas, Ana Paiva,

Mike Preuss, and Kenneth O. Stanley. 2013. Procedural Content Generation: Goals,
Challenges and Actionable Steps. In Artificial and Computational Intelligence in
Games, Simon M. Lucas, Michael Mateas, Mike Preuss, Pieter Spronck, and Julian
Togelius (Eds.). Dagstuhl Follow-Ups, Vol. 6. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 61–75. https://doi.org/10.4230/DFU.Vol6.12191.61

[44] Julian Togelius, Georgios N. Yannakakis, Kenneth O. Stanley, and Cameron
Browne. 2010. Search-Based Procedural Content Generation. In Applications
of Evolutionary Computation, EvoApplicatons 2010: EvoCOMPLEX, EvoGAMES,
EvoIASP, EvoINTELLIGENCE, EvoNUM, and EvoSTOC, Istanbul, Turkey, April 7-9,
2010, Proceedings, Part I (Lecture Notes in Computer Science, Vol. 6024), Cecilia Di
Chio, Stefano Cagnoni, Carlos Cotta, Marc Ebner, Anikó Ekárt, Anna Esparcia-
Alcázar, Chi Keong Goh, Juan Julián Merelo Guervós, Ferrante Neri, Mike Preuss,
Julian Togelius, and Georgios N. Yannakakis (Eds.). Springer, 141–150. https:
//doi.org/10.1007/978-3-642-12239-2_15

[45] Valtchan Valtchanov and Joseph Alexander Brown. 2012. Evolving dungeon
crawler levels with relative placement. In Fifth International C* Conference on
Computer Science & Software Engineering, C3S2E ’12, Montreal, QC, Canada, June
27-29, 2012, Bipin C. Desai, Emil Vassev, and Sudhir P. Mudur (Eds.). ACM, 27–35.
https://doi.org/10.1145/2347583.2347587

https://doi.org/10.1145/3235765.3235810
https://doi.org/10.1145/3235765.3235815
https://boardgamegeek.com/wiki/page/thing:174430:Scenarios
https://boardgamegeek.com/wiki/page/thing:174430:Scenarios
https://doi.org/10.1007/978-3-030-14687-0_5
https://doi.org/10.1109/TCIAIG.2010.2041928
https://doi.org/10.1109/TCIAIG.2010.2041928
https://youtu.be/XUx7riwsrwY
https://doi.org/10.1109/TAI.1994.346443
https://cephalofair.com/pages/gloomhaven-monster-spoilers
https://cephalofair.com/pages/gloomhaven-monster-spoilers
https://boardgamegeek.com/thread/1430857/submissions-fan-made-scenarios-are-open
https://boardgamegeek.com/thread/1430857/submissions-fan-made-scenarios-are-open
https://cephalofair.com/blogs/blog/endless-adventure
https://cephalofair.com/blogs/blog/endless-adventure
https://doi.org/10.1145/3337722.3342238
https://doi.org/10.1145/3337722.3342238
https://ceur-ws.org/Vol-2862/paper9.pdf
https://boardgamegeek.com/
https://doi.org/10.1145/3555858.3555918
https://doi.org/10.1145/3555858.3555918
https://www.kickstarter.com/projects/frosthaven/frosthaven
https://www.kickstarter.com/projects/frosthaven/frosthaven
https://www.kickstarter.com/projects/frosthaven/gloomhaven
https://www.kickstarter.com/projects/frosthaven/gloomhaven
https://www.kickstarter.com/projects/frosthaven/gloomhaven-second-printing
https://www.kickstarter.com/projects/frosthaven/gloomhaven-second-printing
https://doi.org/10.1007/3-540-61532-6_50
https://doi.org/10.1007/3-540-61532-6_50
https://openai.com
https://www.washingtonpost.com/business/2022/12/24/board-game-popularity/
https://www.washingtonpost.com/business/2022/12/24/board-game-popularity/
https://doi.org/10.1016/j.eswa.2021.115009
https://doi.org/10.1016/j.eswa.2021.115009
https://vgb.purplekingdomgames.com/Creator
https://vgb.purplekingdomgames.com/Creator
https://critrole.com/
https://doi.org/10.1145/3402942.3409778
https://doi.org/10.1007/978-3-319-42716-4
https://doi.org/10.4230/DFU.Vol6.12191.61
https://doi.org/10.1007/978-3-642-12239-2_15
https://doi.org/10.1007/978-3-642-12239-2_15
https://doi.org/10.1145/2347583.2347587

FDG 2023, April 12–14, 2023, Lisbon, Portugal Kristian Tijben and Marcus Gerhold

[46] Guido van Rossum. 2007. Python Programming Language. In Proceedings of the
2007 USENIX Annual Technical Conference, Santa Clara, CA, USA, June 17-22, 2007,

Jeff Chase and Srinivasan Seshan (Eds.), Vol. 41. USENIX, 1–36.
[47] Games Workshop. 2020. Warhammer 40,000. Miniature Wargame ninth Edition.

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 The Role-Playing Game Gloomhaven
	3.2 Evolutionary Algorithms

	4 Implementation
	4.1 Select Parents
	4.2 Crossover
	4.3 Mutation
	4.4 Validity Check
	4.5 Evaluation

	5 Experiments
	5.1 Generated Dungeon 1 – ``Overgrown Ruin''
	5.2 Generated Dungeon 2 – ``Drake Kennels''

	6 Concluding Remarks
	6.1 Discussion
	6.2 Future Work

	References

